Sheffield Institute for Nucleic Acids (SInFoNiA)

We are a multidisciplinary research institute bringing together a wide group of scientists from medicine, science and engineering to investigate the role of nucleic acids in health and disease.

Sheffield Institute for Nucleic Acids (SInFoNiA)

We focus on three key areas of research:

Gene Expression: Large parts of the human genome are transcribed to make a variety of RNA molecules including messenger, micro and long non-coding RNAs. These RNA molecules play diverse roles in the cell from templates for making protein, through to regulatory RNAs controlling chromosome structure and activity. Our research investigates the biology of RNA; how it is made, what it does and how it travels around in cells.

Genome Stability: The DNA within our cells which makes up our genome is constantly being damaged and its accurate repair is essential to maintain health and prevent diseases such as cancer. Furthermore, during cell division DNA must be replicated (copied) in an error free way to prevent the accumulation of harmful mutations.  We are studying how DNA is accurately replicated and repaired, and how processes such as the transcription of DNA into RNA carries inherent risks for genome integrity.

Nucleic Acid Chemical Biology: Many diseases are associated with genome instability or uncontrolled gene expression. Numerous protein and nucleic acid molecules play key coordinated roles in genome stability and gene expression. Studies of these molecules using chemical principles and techniques allow the molecular basis of DNA repair, DNA replication and the various roles of RNA to be revealed. This information is vital to exploiting DNA and RNA processes as therapeutic targets. We study the molecular basis of DNA and RNA systems and use chemistry to intervene in these processes.


Working with international collaborators the Dickman group have shown that glucosyl modification of 5-hydroxymethylated cytosines in the DNA of bacteriophage T4 interferes with type I-E and type II-A CRISPR–Cas systems. In contrast, the CRISPR–Cas type V-A system cleaves glucosyl-5-hydroxymethylated cytosine bases in DNA. These findings have important implications that could be exploited for genome engineering applications.
Read more news